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Adiabatic hypercooling of binary melts
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A binary melt is hypercooled when it is cooled to a temperature below its solidus. In the isothermal limit
planar solidification fronts propagate at a constant velocity determined by the kinetic undercooling and are
subject to a long-wavelength morphological instability if speeds fall below a critical value. Here we examine
the adiabatic limit where the accumulation of a small latent heat release causes the velocity of the interface to
slowly decrease through its critical value. The evolution of the hypercooled interface is governed by a damped
Kuramoto-SivashinskydKS) equation with coefficients that vary as the interface decelerates. Using this
equation we show that morphological transitions are delayed by an amount that reflects both the time the
system spends in a stable state and the magnitude of the damping. For a sufficiently large latent heat of fusion
the long-wavelength morphological instability is annihilated. Finally, the adiabatic dKS equation predicts
late-stage coarsening of the microstructure with length scales that incread®. as finite systems this
coarsening removes the morphological instability.

PACS numbsefs): 81.10.Aj, 81.10.Fq, 81.30.Fb

Morphology is less likely to develop on microscopically region but the investigators were unaware of the criterion for
rough interfaces during rapid solidification because of theabsolute stability and do not report on having observed stable
enhanced effects of surface energy. As solidification velociplanar fronts. Nonisothermal effects were clearly present in
ties increase, the thickness of the diffusive boundary layethese experiments and all existing theories of hypercooled
ahead of the front decreases, and this results in a corresponiginary melts are isothermal.
ing decrease in the length scales of the interfacial morphol- We begin by considering a uniform liquid melt at an ini-
ogy. Since small interfacial scales are energetically unfavortial concentrationC; and temperaturd;. The melt will re-
ablle,' t'her.e are often limits of absolute stability where planaimain in equilibrium as long a§; is greater than the tempera-
solidification fronts that are unstable at low growth rates argqure at its liquidusT;=Ty+mG . HereTy, is the melting
restabilized at large growth rates. Two examples of such agemperature of a pure substance ands the slope of the
absolute stability limit occur for the Mullins-Sekerka insta- jiquidus linearized for small solute concentrationsT{ffalls

bility in directionally solidified binary melt§1] and in hy- poj0 T, the liquid is undercooled and it will solidify. Due

percooled pure meltE2]. The transitions near both of these_ to segregation, the concentration in the liquid just ahead of

absolute stability limits occur at wavelengths that are large Ne solidification front will quickly rise toC;/k where k

comparison o the thickness of the boundary layer and Iong-<1 is the segregation coefficient and form a miscibility gap

avelength evolution equations may be derived that describe . .
mevtrans%tior{\;—lé]l quat y W I at the interface oA C=(1—k)C; /k. If we define the degree

These regimes are difficult to access experimentally. A0f undercooling to be\ =(T;—T,)/mAC, then the liquid is
restabilization at large velocity has been observed in experflyPercooled to a temperature below the temperature at its
ments on liquid crystals with an isotropic-nematic transition€quilibrium solidus Ts=T,+mAC, whenA>1.
that mimics the directional solidification of a binary mig. If the latent heat of fusion per unit volunie; is zero, the
Hypercooled pure melts have also been obsef8¢thut the  solidification will proceed isothermally at a rate that is con-
growth rates at which the planar fronts restabilize occur atrolled by the solute diffusivityD. The isothermal solidifica-
unattainably large undercoolings. Absolutely stable hypertion of a binary alloy is analogous to the solidification of a
cooled fronts have apparently only been observed for th@ure melt and, in fact, the governing equations are identical
superfluid *He A-B phase transitiof9] where extremely if the miscibility gaps are constant. By analogy then it is
large surface energies preclude homogeneous nucleation. immediately clear that there are three distinct long-time be-

Hypercooling occurs when microscopic attachment kinethaviors for the velocity of a planar front solution depend-
ics at the interface limits the velocity of the front to such aning on the size of the undercooling. Fok@ <1 the system
extent that the rate limiting species may be diffused aways undercooled and=0(t~*?) ast—o; for A=1 the sys-
fast enough to allow fronts which propagate at constant vetem is on the border between being undercooled and hyper-
locity. Although hypercooling is difficult to achieve in pure cooled andv=0(t" % ast—x; for A>1 the system is
melts, it has been argu¢d] that it should be easily achiev- hypercooled an@ =0(1) ast—o [11].
able in binary melts where hypercooling occurs when under- Undercooled and hypercooled growth are subject to a
coolings are set below the equilibrium solidus. In fact, ex-Mullins-Sekerka instabilityf 12] below the limit of absolute
periments on such constitutionally hypercooled binary alloysstability A<A,=1+(yk)~! where the parametery
have been performed using the transparent plastic crystat 8T,,do/D is defined here in terms of the capillary length
succinonitrile and sald|10]. Experimental observations are d, and the coefficient of interface attachment kinetjgsAt
reported of unexpected microstructures in the hypercoolethrger hypercoolingdd>A., planar solidification fronts are
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linearly stable[3]. As A decreases through., a long- interface remains at a nearly constant valjék while the
wavelength instability occurf2—4] and the development of temperature at the interface increases monotonically to the
the transition is governed by the Kuramoto-Sivashingkg)  valueTg. For undercooled growth the terk¥ remains uni-
equation[13]. formly small for all time and nonzero latent heat acts as a
In a coordinate system translating with velodityhe dif-  regular perturbation to the isothermal problem. The interfa-
fusion equation fowu, the deviation of the solute concentra- cial temperature of the undercooled melt remains nearly con-
tion from its initial valueC; scaled on the miscibility gap stant at the valud; while the concentration at the interface
AC, is increases to the valu€;+ (T;—T;)/m. Hypercooled melts
trace out vertical paths in the phase diagram while under-
u=V>2u+ou,. (1) cooled melts trace out horizontal paths.
) . . The transition near the absolute stability limit for an iso-
The conservation of mass at an interfaceh moving at &  hermally hypercooled binary melt occurs at zero wave num-
normal velocnyvn_ (measured in the stationary frajnaith bers and the nonlinear dynamics is described by a long-
curvature K requires thatV,u+uv,[k+(1-kju]=0. The  \yayelength evolution equatiofil4]. For velocities just
condition of thermodynamic equilibrium at the interface pgow the critical velocityv,.=A.—1 the long-wavelength
further ~ requires u=A-uv,—yK—\6 where N  oges are linearly unstable and the nonlinear development
=DL, /kr|m[AC is the latent heat made nondimensional inf the transition is governed by the KS equati®]. This
combination with the thermal conductivityr and 0 is the  picture is modified in three ways when the latent heat is
deviation of the temperature at the interface from its initialgma| put nonzero. First, the latent heat causes the interface
valueT; scaled byDL, /kr . Lengths have been scaled on thety sjowly decelerate so that the coefficients of the corre-
kinetic length,D/B, and time has been scaled on the diffu- sponding KS equation are slowly varying functions of time.
sive time,D/ 8. . S If the initial velocity v; is larger thanv., there is a slow
When the latent heat is zero and the liquid is hypercooledpassage through the long-wavelength instability. Second, the
the solidification is isothermal and planar fronts propagate afgtent-heat release produces temperature gradients at the
a constant velocity =A —1. When latent heat is not identi- front which stabilize the interface. This stabilization appears
cally zero, the solidification will not remain isothermal. a5 g linear damping term in the KS equatid®,16. And
However, when the latent heat is small the system will un+hjrd, the temperature field near the nonplanar front is a non-
dergo an adiabatic change in temperature that produces|gcal function of the interface displacemefiit7,18 which
SIOW modiﬁcation in the Solidiﬁcation VeIOCitieS that can be appears as a non|oca| Contribution to the KS equation. In our
determined. To do this we first assume that since thermalase, if the translation of the coordinate system is chosen so
diffusivities for metal alloys are typically three to four orders that the interface has zero mean, these nonlocal terms are
of magnitude larger than the mass diffusivities which controly|so nonlinear. If we exclude these nonlinear nonlocal terms,
the solidification rate, the temperature fields are quasistatiGhen the corresponding damped Kuramoto-Sivashinsky
If the temperature is fixed to b& along a bounding wall (dk<S) equation with time-dependent coefficients that models

where the liquid first freezes, then the nondimensional temthe |ong-wave transition near absolute stability for adiabati-
perature at the interface at tinbdor a thermally symmetric  cally hypercooled binary melts is
model is
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The effect of latent heat remains small unless, over time, the
term\ @ in the condition of thermodynamic equilibrium be-
comes significant. After diffusive transients have decaye

qﬁ/here the symbold;h)3 represents the nonlinear term less
the concentration adopts an exponential profile exp

s mean value. As\ tends toward zero the velocity tends
) _ toward the constant; and the adiabatic dKS equation be-
(_UZ)’. and we assume th"?‘t _t|me_s are sp_large that the INteYrAhmes the KS equation governing isothermal growth. The
term in the_ equation defining is significant. An ordered_ time-dependent coefficients in the adiabatic dKS equation for
expansion irh may then be developed under the assumption, e,y hypercooled binary alloys are reminiscent of the KS
tha,tM:O(l) and it is f‘?“”?’ that to leading order the ve- equation derived for spherically expanding flanig8]. The
locity of the planar front is given by derivation of the equation requires that the length scales
which describe the morphology along the front be large in

_ Vi (3y  comparison tov ~1, the thickness of the solutal boundary
V1+2\v;it layer ahead of the front.

The long-wavelength evolution equation allows us to sim-
where the initial velocity isv;=A—1. Although for very ply examine the linear stability of the planar front which
long times a hypercooled binary melt that releases a smatkepresents a time-dependent basic-state solution to the solidi-
amount of latent heat as it solidifies behaves as if it werdication problem. Often it is difficult to decide on what is
undercooled withv=0(t %) as \t—o, hypercooled meant by the stability of a time-dependent base state but,
growth is distinguished from undercooled growth by the pathwithin the contexts of the evolution equation, the issue of
the solidification process traces out in the equilibrium phasetability can be made clear. We define the planar front solu-
diagram. For hypercooled growth the concentration at th¢ion to be linearly stable if the amplitudes of all Fourier
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FIG. 1. The scaled wave number cutaff vs the interface
velocity v for k=1/2. At each value of the latent-heat parameter,
0<\<5/3&, there is a family of curves for €v;/v.<50. The
bold curves are the asymptotes for each family g .— .

0 x L

. FIG. 2. A visualization of the numerical solution to Eg) that
coefficients,h(q,t), for solutions to the linearized evolution uses greyscale to denote amplitude. Here the length of the interval
equation are smaller than their initial values. If at any pointis L=75, A=0.1, andk=1/2. Initial conditions quickly relax to
in time the power spectrum is no longer bounded by thezero amplitude forv;=2>v.=1 and amplitudes remain nearly
initial spectrum, the solution is said to be unstable. Althougheero as velocities decrease through(first mark. A delayed insta-
this is a rather strong restriction which ignores the possibilitybility develops as velocities decrease further through the vajue
of transient growth and eventual relaxati@d], it appears to  (second mark predicted by Eq(6). A cascade of cellular states
give a sensible indication of when sustained growth begins téesults as the system coarsens, finally returning to a planar front
occur in numerical simulations of the adiabatic dKS equa{not shown. No instability is observed foh>5/3&. Time runs

tion. from O to 50 units in the figure.
The Fourier coefficients of the linearized equatidpnor-
malized by their initial values satisfy andv decreases belowy, the instability develops for an
interval of wave numbers bounded above by a cutoff wave
h(g,t) vi [0 f-v?) |, numberq, . Figure 1 depicts this cutoff wave number for
In h(q.,0) I 3k7\vi2v3_2k>\vivcv2 q k=1/2 as a function of the velocity scaled on the critical

velocity v.. There are ten families of curves for valueshof
ranging from\ =0 to A =5/36k. Each family is composed of
q*. (5)  curves for values of the scaled initial velocity/v . ranging
fromv;/v.=1 tov;/v,=50. These asymptote to the thick-

_ened lines as the initial velocities become large. Ror
When v slowly decreases from;>v. the planar front is . 536 the families collapse into the origin.

initially stable and amplitudes relax to zero exponentially  geyeral features of the instability are clear from this fig-
fast. In the absence of noise, the Fourier coefficients decreagge First, due to the delay, the curves begin at a value of
s_ubstantially in this initially stable period. In fact, the solu- v/v.<1 where the value of, represents the wave number
tion remains stable as the instantaneous velogityasses of the first unstable mode. As time increases and the inter-
through the critical value .. The spectrum experiences its face continues to decelerate, the cutoff wave number in-
first growth at a delayed transition velocity which is well  creases as the band of linearly unstable wave numbers broad-
approximated fon not too small by ens. The band continues to broaden and the length scales of
the unstable modes continue to decrease until at some point
in time a maximum value is reached after which the cutoff
® wave number begi i
gins to decrease. The structure begins to
coarsen as the length scales of the linearly unstable modes
The larger the values of andv;, the smaller the values of increase. As velocities decrease to zero, the cutoff wave
vq4 and the longer the delay in the development of the instanumbers scale on the velocity and, within the contexts of the
bility. As N\ approaches a critical value 5/6the delayed linear theory, the late-stage coarsening is characterized by
velocity tends toward zero which takes an infinite time tolength scales which increase #€.
achieve. For larger values of the latent-heat parameter, planar This coarsening is linked directly to the deceleration in
fronts remain stable. the interface and the associated thickening of the diffusive
When 0<\<5/36k an instability occurs fov<vy. La-  boundary layer ahead of it. If we compare the cutoff wave-
tent heat has stabilized the zero-wave-number mode and thength 27/q, to the thickness of the diffusive boundary
transition occurs at a nonzero wave number. As time evolvekyerv 1, we find that this ratio increases monotonically as

(WP=v%  (vi-0v?

Skaviv®  4kPAviv vt

5
(5—36\k)vg '=5| 3+ e ve1—36Mkv; t.
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time evolves but is bounded above for all values of thelay in the instability is well predicted by the velocity from
physical parameters by a small constant slightly less thagq. (6). The complicated dynamics of the KS equation re-
0.2. The asymptotic derivation of the long-wavelength evo-lecting spatiotemporal chaos settles down to well-defined
lution equation is predicated on this ratio being small. Al-cellular states. As velocities decrease, the system coarsens.
though we can control the size of this ratio only in the limit Cells do not merge during this coarsening process; cells are
as\ tends to zero and for velocities near the critical velocity,|ost at temporal defects that are reminiscent of phase turbu-
the fact that it stays uniformly small suggests that E4). |ence. The persistence times for the cellular states increase as
may well model the dynamics of the transition outside of thisihe cutoff wave number slows its approach to zero. The dy-

asymptotically controlled regime. namics of the cell-cell transitions also simplifies as time
The development of the instability may be followed by o\ q\yes, for the transitions between two-cell and one-cell

numerically computing solutions to the adiabatic dKS equa tates heteroclinic connections and traveling waves are

tion. We assume periodic boundary conditions on a spati learly observed. At still later times there is a transition back
interval of lengthL, apply a pseudospectral method with uni- t0 a planar front

formly spaced collocation points, and integrate the coeffi- In summary, the accumulation of latent heat in hyper-

cients of the spectral decomposition in time usiw@pE, a . L
. . . .cooled binary melts causes solidification fronts to decelerate.
software package designed for solving stiff systems of ordis .
X . . We have found that absolutely stable fronts will decelerate
nary differential equationg21].

. L . through a delayed long-wavelength instability modeled by a
The interface velocities are slowly varying for small val- damoed  Kuramoto-Sivashinsky equation  with  time-
ues of the latent heat parameter and solutions td&qnay e epndent coefficients and the rgsultig morphological insta-
be interpreted as solutions to the isothermal KS equatioH. Penc o ulting P 9
. s . . bility will coarsen as velocities continue to decrease. When a
with coefficients that are parametrized on time. For larg . : O .
e . . atent-heat parameter is large enough the instability is anni-
domain size4., however, the interface velocities do not vary

slowly on the diffusive time scale?t. Adiabatic variations hilated.
in the speed of a solidification front will generally influence
the long-time dynamics in extended systems.

A typical numerical solution to Eq4) for a reasonably
large systenlL =75 is featured in Fig. 2. The value of the
latent-heat parameter is significant hexe; 0.1, and the de-
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