
PHYSICAL REVIEW E SEPTEMBER 2000VOLUME 62, NUMBER 3
Adiabatic hypercooling of binary melts
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~Received 22 November 1999!

A binary melt is hypercooled when it is cooled to a temperature below its solidus. In the isothermal limit
planar solidification fronts propagate at a constant velocity determined by the kinetic undercooling and are
subject to a long-wavelength morphological instability if speeds fall below a critical value. Here we examine
the adiabatic limit where the accumulation of a small latent heat release causes the velocity of the interface to
slowly decrease through its critical value. The evolution of the hypercooled interface is governed by a damped
Kuramoto-Sivashinsky~dKS! equation with coefficients that vary as the interface decelerates. Using this
equation we show that morphological transitions are delayed by an amount that reflects both the time the
system spends in a stable state and the magnitude of the damping. For a sufficiently large latent heat of fusion
the long-wavelength morphological instability is annihilated. Finally, the adiabatic dKS equation predicts
late-stage coarsening of the microstructure with length scales that increase ast1/2. In finite systems this
coarsening removes the morphological instability.

PACS number~s!: 81.10.Aj, 81.10.Fq, 81.30.Fb
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Morphology is less likely to develop on microscopical
rough interfaces during rapid solidification because of
enhanced effects of surface energy. As solidification velo
ties increase, the thickness of the diffusive boundary la
ahead of the front decreases, and this results in a corresp
ing decrease in the length scales of the interfacial morp
ogy. Since small interfacial scales are energetically unfav
able, there are often limits of absolute stability where pla
solidification fronts that are unstable at low growth rates
restabilized at large growth rates. Two examples of such
absolute stability limit occur for the Mullins-Sekerka inst
bility in directionally solidified binary melts@1# and in hy-
percooled pure melts@2#. The transitions near both of thes
absolute stability limits occur at wavelengths that are large
comparison to the thickness of the boundary layer and lo
wavelength evolution equations may be derived that desc
the transition@2–6#.

These regimes are difficult to access experimentally
restabilization at large velocity has been observed in exp
ments on liquid crystals with an isotropic-nematic transiti
that mimics the directional solidification of a binary melt@7#.
Hypercooled pure melts have also been observed@8# but the
growth rates at which the planar fronts restabilize occu
unattainably large undercoolings. Absolutely stable hyp
cooled fronts have apparently only been observed for
superfluid 3He A-B phase transition@9# where extremely
large surface energies preclude homogeneous nucleatio

Hypercooling occurs when microscopic attachment kin
ics at the interface limits the velocity of the front to such
extent that the rate limiting species may be diffused aw
fast enough to allow fronts which propagate at constant
locity. Although hypercooling is difficult to achieve in pur
melts, it has been argued@3# that it should be easily achiev
able in binary melts where hypercooling occurs when und
coolings are set below the equilibrium solidus. In fact, e
periments on such constitutionally hypercooled binary allo
have been performed using the transparent plastic cry
succinonitrile and salol@10#. Experimental observations ar
reported of unexpected microstructures in the hypercoo
PRE 621063-651X/2000/62~3!/3954~4!/$15.00
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region but the investigators were unaware of the criterion
absolute stability and do not report on having observed sta
planar fronts. Nonisothermal effects were clearly presen
these experiments and all existing theories of hypercoo
binary melts are isothermal.

We begin by considering a uniform liquid melt at an in
tial concentrationCi and temperatureTi . The melt will re-
main in equilibrium as long asTi is greater than the tempera
ture at its liquidus,Tl5TM1mCi . HereTM is the melting
temperature of a pure substance andm is the slope of the
liquidus linearized for small solute concentrations. IfTi falls
below Tl , the liquid is undercooled and it will solidify. Due
to segregation, the concentration in the liquid just ahead
the solidification front will quickly rise toCi /k where k
,1 is the segregation coefficient and form a miscibility g
at the interface ofDC5(12k)Ci /k. If we define the degree
of undercooling to beD5(Ti2Tl)/mDC, then the liquid is
hypercooled to a temperature below the temperature a
equilibrium solidus,Ts5Tl1mDC, whenD.1.

If the latent heat of fusion per unit volumeLv is zero, the
solidification will proceed isothermally at a rate that is co
trolled by the solute diffusivityD. The isothermal solidifica-
tion of a binary alloy is analogous to the solidification of
pure melt and, in fact, the governing equations are ident
if the miscibility gaps are constant. By analogy then it
immediately clear that there are three distinct long-time
haviors for the velocityv of a planar front solution depend
ing on the size of the undercooling. For 0,D,1 the system
is undercooled andv5O(t21/2) as t→`; for D51 the sys-
tem is on the border between being undercooled and hy
cooled andv5O(t21/3) as t→`; for D.1 the system is
hypercooled andv5O(1) ast→` @11#.

Undercooled and hypercooled growth are subject to
Mullins-Sekerka instability@12# below the limit of absolute
stability D,Dc511(gk)21 where the parameterg
5bTmd0 /D is defined here in terms of the capillary leng
d0 and the coefficient of interface attachment kinetics,b. At
larger hypercoolingsD.Dc , planar solidification fronts are
3954 ©2000 The American Physical Society
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PRE 62 3955ADIABATIC HYPERCOOLING OF BINARY MELTS
linearly stable@3#. As D decreases throughDc , a long-
wavelength instability occurs@2–4# and the development o
the transition is governed by the Kuramoto-Sivashinsky~KS!
equation@13#.

In a coordinate system translating with velocityv the dif-
fusion equation foru, the deviation of the solute concentr
tion from its initial valueCi scaled on the miscibility gap
DC, is

ut5¹2u1vuz . ~1!

The conservation of mass at an interfacez5h moving at a
normal velocityvn ~measured in the stationary frame! with
curvatureK requires that¹nu1vn@k1(12k)u#50. The
condition of thermodynamic equilibrium at the interfa
further requires u5D2vn2gK2lu where l
5DLv /kTumuDC is the latent heat made nondimensional
combination with the thermal conductivitykT and u is the
deviation of the temperature at the interface from its init
valueTi scaled byDLv /kT . Lengths have been scaled on t
kinetic length,D/b, and time has been scaled on the diff
sive time,D/b2.

When the latent heat is zero and the liquid is hypercoo
the solidification is isothermal and planar fronts propagat
a constant velocityv5D21. When latent heat is not ident
cally zero, the solidification will not remain isotherma
However, when the latent heat is small the system will u
dergo an adiabatic change in temperature that produc
slow modification in the solidification velocities that can
determined. To do this we first assume that since ther
diffusivities for metal alloys are typically three to four orde
of magnitude larger than the mass diffusivities which cont
the solidification rate, the temperature fields are quasist
If the temperature is fixed to beTi along a bounding wall
where the liquid first freezes, then the nondimensional te
perature at the interface at timet for a thermally symmetric
model is

u5vE
0

t

v. ~2!

The effect of latent heat remains small unless, over time,
term lu in the condition of thermodynamic equilibrium be
comes significant. After diffusive transients have decay
the concentration adopts an exponential profileu5exp
(2vz), and we assume that times are so large that the inte
term in the equation definingu is significant. An ordered
expansion inl may then be developed under the assumpt
that lt5O(1) and it is found that to leading order the v
locity of the planar front is given by

v5
v i

A112lv i t
~3!

where the initial velocity isv i5D21. Although for very
long times a hypercooled binary melt that releases a sm
amount of latent heat as it solidifies behaves as if it w
undercooled with v5O(t21/2) as lt→`, hypercooled
growth is distinguished from undercooled growth by the p
the solidification process traces out in the equilibrium ph
diagram. For hypercooled growth the concentration at
l
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interface remains at a nearly constant valueCi /k while the
temperature at the interface increases monotonically to
valueTs . For undercooled growth the termlu remains uni-
formly small for all time and nonzero latent heat acts a
regular perturbation to the isothermal problem. The inter
cial temperature of the undercooled melt remains nearly c
stant at the valueTi while the concentration at the interfac
increases to the valueCi1(Ti2Tl)/m. Hypercooled melts
trace out vertical paths in the phase diagram while und
cooled melts trace out horizontal paths.

The transition near the absolute stability limit for an is
thermally hypercooled binary melt occurs at zero wave nu
bers and the nonlinear dynamics is described by a lo
wavelength evolution equation@14#. For velocities just
below the critical velocityvc5Dc21 the long-wavelength
modes are linearly unstable and the nonlinear developm
of the transition is governed by the KS equation@3#. This
picture is modified in three ways when the latent heat
small but nonzero. First, the latent heat causes the inter
to slowly decelerate so that the coefficients of the cor
sponding KS equation are slowly varying functions of tim
If the initial velocity v i is larger thanvc , there is a slow
passage through the long-wavelength instability. Second,
latent-heat release produces temperature gradients a
front which stabilize the interface. This stabilization appe
as a linear damping term in the KS equation@15,16#. And
third, the temperature field near the nonplanar front is a n
local function of the interface displacement@17,18# which
appears as a nonlocal contribution to the KS equation. In
case, if the translation of the coordinate system is chose
that the interface has zero mean, these nonlocal terms
also nonlinear. If we exclude these nonlinear nonlocal ter
then the corresponding damped Kuramoto-Sivashin
~dKS! equation with time-dependent coefficients that mod
the long-wave transition near absolute stability for adiab
cally hypercooled binary melts is

] th1
vc2v
kvcv

]x
2h1

kvc1v

k2vcv
3

]x
4h1

1

2k
~]xh!0

21lvh50,

~4!

where the symbol (]xh)0
2 represents the nonlinear term le

its mean value. Asl tends toward zero the velocity tend
toward the constantv i and the adiabatic dKS equation b
comes the KS equation governing isothermal growth. T
time-dependent coefficients in the adiabatic dKS equation
nearly hypercooled binary alloys are reminiscent of the
equation derived for spherically expanding flames@19#. The
derivation of the equation requires that the length sca
which describe the morphology along the front be large
comparison tov21, the thickness of the solutal bounda
layer ahead of the front.

The long-wavelength evolution equation allows us to si
ply examine the linear stability of the planar front whic
represents a time-dependent basic-state solution to the so
fication problem. Often it is difficult to decide on what
meant by the stability of a time-dependent base state
within the contexts of the evolution equation, the issue
stability can be made clear. We define the planar front so
tion to be linearly stable if the amplitudes of all Fouri
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3956 PRE 62KIRK BRATTKUS
coefficients,ĥ(q,t), for solutions to the linearized evolutio
equation are smaller than their initial values. If at any po
in time the power spectrum is no longer bounded by
initial spectrum, the solution is said to be unstable. Althou
this is a rather strong restriction which ignores the possibi
of transient growth and eventual relaxation@20#, it appears to
give a sensible indication of when sustained growth begin
occur in numerical simulations of the adiabatic dKS eq
tion.

The Fourier coefficients of the linearized equation~4! nor-
malized by their initial values satisfy

lnU ĥ~q,t !

ĥ~q,0!
U512

v i

v
1F ~v i

32v3!

3klv i
2v3

2
~v i

22v2!

2klv ivcv
2Gq2

2F ~v i
52v5!

5klv i
4v5

1
~v i

42v4!

4k2lv i
3vcv

4Gq4. ~5!

When v slowly decreases fromv i.vc the planar front is
initially stable and amplitudes relax to zero exponentia
fast. In the absence of noise, the Fourier coefficients decr
substantially in this initially stable period. In fact, the sol
tion remains stable as the instantaneous velocityv passes
through the critical valuevc . The spectrum experiences i
first growth at a delayed transition velocityvd which is well
approximated forl not too small by

~5236lk!vd
2155S 31

5

4kD vc
21236lkv i

21 . ~6!

The larger the values ofl andv i , the smaller the values o
vd and the longer the delay in the development of the ins
bility. As l approaches a critical value 5/36k, the delayed
velocity tends toward zero which takes an infinite time
achieve. For larger values of the latent-heat parameter, pl
fronts remain stable.

When 0,l,5/36k an instability occurs forv,vd . La-
tent heat has stabilized the zero-wave-number mode and
transition occurs at a nonzero wave number. As time evo

FIG. 1. The scaled wave number cutoffq* vs the interface
velocity v for k51/2. At each value of the latent-heat paramet
0,l,5/36k, there is a family of curves for 1,v i /vc,50. The
bold curves are the asymptotes for each family asv i /vc→`.
t
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and v decreases belowvd , the instability develops for an
interval of wave numbers bounded above by a cutoff wa
numberq* . Figure 1 depicts this cutoff wave number fo
k51/2 as a function of the velocity scaled on the critic
velocity vc . There are ten families of curves for values ofl
ranging froml50 to l55/36k. Each family is composed o
curves for values of the scaled initial velocityv i /vc ranging
from v i /vc51 to v i /vc550. These asymptote to the thick
ened lines as the initial velocities become large. Forl
→5/36k the families collapse into the origin.

Several features of the instability are clear from this fi
ure. First, due to the delay, the curves begin at a value
v/vc,1 where the value ofq* represents the wave numbe
of the first unstable mode. As time increases and the in
face continues to decelerate, the cutoff wave number
creases as the band of linearly unstable wave numbers br
ens. The band continues to broaden and the length scale
the unstable modes continue to decrease until at some p
in time a maximum value is reached after which the cut
wave number begins to decrease. The structure begin
coarsen as the length scales of the linearly unstable mo
increase. As velocities decrease to zero, the cutoff w
numbers scale on the velocity and, within the contexts of
linear theory, the late-stage coarsening is characterized
length scales which increase ast1/2.

This coarsening is linked directly to the deceleration
the interface and the associated thickening of the diffus
boundary layer ahead of it. If we compare the cutoff wav
length 2p/q* to the thickness of the diffusive boundar
layer v21, we find that this ratio increases monotonically

,

FIG. 2. A visualization of the numerical solution to Eq.~4! that
uses greyscale to denote amplitude. Here the length of the inte
is L575, l50.1, andk51/2. Initial conditions quickly relax to
zero amplitude forv i52.vc51 and amplitudes remain nearl
zero as velocities decrease throughvc ~first mark!. A delayed insta-
bility develops as velocities decrease further through the valuevd

~second mark! predicted by Eq.~6!. A cascade of cellular state
results as the system coarsens, finally returning to a planar f
~not shown!. No instability is observed forl.5/36k. Time runs
from 0 to 50 units in the figure.
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PRE 62 3957ADIABATIC HYPERCOOLING OF BINARY MELTS
time evolves but is bounded above for all values of
physical parameters by a small constant slightly less t
0.2. The asymptotic derivation of the long-wavelength e
lution equation is predicated on this ratio being small. A
though we can control the size of this ratio only in the lim
asl tends to zero and for velocities near the critical veloci
the fact that it stays uniformly small suggests that Eq.~4!
may well model the dynamics of the transition outside of t
asymptotically controlled regime.

The development of the instability may be followed b
numerically computing solutions to the adiabatic dKS eq
tion. We assume periodic boundary conditions on a spa
interval of lengthL, apply a pseudospectral method with un
formly spaced collocation points, and integrate the coe
cients of the spectral decomposition in time usingVODE, a
software package designed for solving stiff systems of o
nary differential equations@21#.

The interface velocities are slowly varying for small va
ues of the latent heat parameter and solutions to Eq.~4! may
be interpreted as solutions to the isothermal KS equa
with coefficients that are parametrized on time. For la
domain sizesL, however, the interface velocities do not va
slowly on the diffusive time scaleL2t. Adiabatic variations
in the speed of a solidification front will generally influenc
the long-time dynamics in extended systems.

A typical numerical solution to Eq.~4! for a reasonably
large systemL575 is featured in Fig. 2. The value of th
latent-heat parameter is significant here,l50.1, and the de-
s.
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lay in the instability is well predicted by the velocityvd from
Eq. ~6!. The complicated dynamics of the KS equation r
flecting spatiotemporal chaos settles down to well-defin
cellular states. As velocities decrease, the system coars
Cells do not merge during this coarsening process; cells
lost at temporal defects that are reminiscent of phase tu
lence. The persistence times for the cellular states increas
the cutoff wave number slows its approach to zero. The
namics of the cell-cell transitions also simplifies as tim
evolves, for the transitions between two-cell and one-c
states heteroclinic connections and traveling waves
clearly observed. At still later times there is a transition ba
to a planar front.

In summary, the accumulation of latent heat in hyp
cooled binary melts causes solidification fronts to deceler
We have found that absolutely stable fronts will deceler
through a delayed long-wavelength instability modeled b
damped Kuramoto-Sivashinsky equation with tim
dependent coefficients and the resulting morphological in
bility will coarsen as velocities continue to decrease. Whe
latent-heat parameter is large enough the instability is a
hilated.
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